Copied to
clipboard

G = C23.5D12order 192 = 26·3

5th non-split extension by C23 of D12 acting via D12/C3=D4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.5D12, C23⋊C44S3, C22⋊C42D6, (C2×C4).5D12, (C2×C12).7D4, (C2×D4).12D6, C6.14C22≀C2, D46D6.1C2, (C2×Dic3).1D4, (C22×S3).1D4, (C6×D4).9C22, C22.9(C2×D12), (C22×C6).18D4, C22.25(S3×D4), C23.6D62C2, C31(C23.7D4), (C22×C6).3C23, C2.17(D6⋊D4), C23.23D61C2, C6.D42C22, C23.21D61C2, C23.13(C22×S3), (C22×Dic3)⋊1C22, (C3×C23⋊C4)⋊5C2, (C2×C6).18(C2×D4), (C3×C22⋊C4)⋊2C22, (C2×C3⋊D4).3C22, SmallGroup(192,301)

Series: Derived Chief Lower central Upper central

C1C22×C6 — C23.5D12
C1C3C6C2×C6C22×C6C2×C3⋊D4D46D6 — C23.5D12
C3C6C22×C6 — C23.5D12
C1C2C23C23⋊C4

Generators and relations for C23.5D12
 G = < a,b,c,d,e | a2=b2=c2=d12=1, e2=c, ab=ba, ac=ca, dad-1=eae-1=abc, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=cd-1 >

Subgroups: 544 in 160 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C4○D4, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C23⋊C4, C23⋊C4, C22.D4, 2+ 1+4, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C6.D4, C3×C22⋊C4, C4○D12, S3×D4, D42S3, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C6×D4, C23.7D4, C23.6D6, C3×C23⋊C4, C23.21D6, C23.23D6, D46D6, C23.5D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C22≀C2, C2×D12, S3×D4, C23.7D4, D6⋊D4, C23.5D12

Character table of C23.5D12

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F4G4H6A6B6C6D6E12A12B12C12D12E
 size 1122241212248812121212242444888888
ρ1111111111111111111111111111    trivial
ρ21111111111-1-11-1-11-111111-1-1-11-1    linear of order 2
ρ311111-11-11-1-111-1-1-111111-11-11-1-1    linear of order 2
ρ411111-11-11-11-1111-1-11111-1-11-1-11    linear of order 2
ρ5111111-1-111-1-1-111-1111111-1-1-11-1    linear of order 2
ρ6111111-1-11111-1-1-1-1-11111111111    linear of order 2
ρ711111-1-111-11-1-1-1-1111111-1-11-1-11    linear of order 2
ρ811111-1-111-1-11-1111-11111-11-11-1-1    linear of order 2
ρ922-2-220-202000200002-2-22000000    orthogonal lifted from D4
ρ1022-22-20022000000-2022-2-2000000    orthogonal lifted from D4
ρ1122-2-220202000-200002-2-22000000    orthogonal lifted from D4
ρ12222-2-2-2002200000002-22-2-200020    orthogonal lifted from D4
ρ1322222200-122200000-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1422222-200-1-22-200000-1-1-1-111-111-1    orthogonal lifted from D6
ρ1522222200-12-2-200000-1-1-1-1-1111-11    orthogonal lifted from D6
ρ1622-22-200-220000002022-2-2000000    orthogonal lifted from D4
ρ17222-2-22002-200000002-22-22000-20    orthogonal lifted from D4
ρ1822222-200-1-2-2200000-1-1-1-11-11-111    orthogonal lifted from D6
ρ19222-2-2200-1-20000000-11-11-1-3-3313    orthogonal lifted from D12
ρ20222-2-2200-1-20000000-11-11-133-31-3    orthogonal lifted from D12
ρ21222-2-2-200-120000000-11-111-333-1-3    orthogonal lifted from D12
ρ22222-2-2-200-120000000-11-1113-3-3-13    orthogonal lifted from D12
ρ2344-4-44000-200000000-222-2000000    orthogonal lifted from S3×D4
ρ2444-44-4000-200000000-2-222000000    orthogonal lifted from S3×D4
ρ254-400000040000-2i2i00-4000000000    complex lifted from C23.7D4
ρ264-4000000400002i-2i00-4000000000    complex lifted from C23.7D4
ρ278-8000000-4000000004000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C23.5D12
On 48 points
Generators in S48
(2 20)(3 44)(4 30)(6 24)(7 48)(8 34)(10 16)(11 40)(12 26)(13 33)(14 37)(17 25)(18 41)(21 29)(22 45)(28 43)(32 47)(36 39)
(1 27)(2 20)(3 29)(4 22)(5 31)(6 24)(7 33)(8 14)(9 35)(10 16)(11 25)(12 18)(13 48)(15 38)(17 40)(19 42)(21 44)(23 46)(26 41)(28 43)(30 45)(32 47)(34 37)(36 39)
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 37)(9 38)(10 39)(11 40)(12 41)(13 33)(14 34)(15 35)(16 36)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 41 42 12)(2 11 43 40)(3 39 44 10)(4 9 45 38)(5 37 46 8)(6 7 47 48)(13 24 33 32)(14 31 34 23)(15 22 35 30)(16 29 36 21)(17 20 25 28)(18 27 26 19)

G:=sub<Sym(48)| (2,20)(3,44)(4,30)(6,24)(7,48)(8,34)(10,16)(11,40)(12,26)(13,33)(14,37)(17,25)(18,41)(21,29)(22,45)(28,43)(32,47)(36,39), (1,27)(2,20)(3,29)(4,22)(5,31)(6,24)(7,33)(8,14)(9,35)(10,16)(11,25)(12,18)(13,48)(15,38)(17,40)(19,42)(21,44)(23,46)(26,41)(28,43)(30,45)(32,47)(34,37)(36,39), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,37)(9,38)(10,39)(11,40)(12,41)(13,33)(14,34)(15,35)(16,36)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,41,42,12)(2,11,43,40)(3,39,44,10)(4,9,45,38)(5,37,46,8)(6,7,47,48)(13,24,33,32)(14,31,34,23)(15,22,35,30)(16,29,36,21)(17,20,25,28)(18,27,26,19)>;

G:=Group( (2,20)(3,44)(4,30)(6,24)(7,48)(8,34)(10,16)(11,40)(12,26)(13,33)(14,37)(17,25)(18,41)(21,29)(22,45)(28,43)(32,47)(36,39), (1,27)(2,20)(3,29)(4,22)(5,31)(6,24)(7,33)(8,14)(9,35)(10,16)(11,25)(12,18)(13,48)(15,38)(17,40)(19,42)(21,44)(23,46)(26,41)(28,43)(30,45)(32,47)(34,37)(36,39), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,37)(9,38)(10,39)(11,40)(12,41)(13,33)(14,34)(15,35)(16,36)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,41,42,12)(2,11,43,40)(3,39,44,10)(4,9,45,38)(5,37,46,8)(6,7,47,48)(13,24,33,32)(14,31,34,23)(15,22,35,30)(16,29,36,21)(17,20,25,28)(18,27,26,19) );

G=PermutationGroup([[(2,20),(3,44),(4,30),(6,24),(7,48),(8,34),(10,16),(11,40),(12,26),(13,33),(14,37),(17,25),(18,41),(21,29),(22,45),(28,43),(32,47),(36,39)], [(1,27),(2,20),(3,29),(4,22),(5,31),(6,24),(7,33),(8,14),(9,35),(10,16),(11,25),(12,18),(13,48),(15,38),(17,40),(19,42),(21,44),(23,46),(26,41),(28,43),(30,45),(32,47),(34,37),(36,39)], [(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,37),(9,38),(10,39),(11,40),(12,41),(13,33),(14,34),(15,35),(16,36),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,41,42,12),(2,11,43,40),(3,39,44,10),(4,9,45,38),(5,37,46,8),(6,7,47,48),(13,24,33,32),(14,31,34,23),(15,22,35,30),(16,29,36,21),(17,20,25,28),(18,27,26,19)]])

Matrix representation of C23.5D12 in GL8(𝔽13)

10000000
01000000
441200000
040120000
00001004
00000101
000000120
000000012
,
120000000
012000000
001200000
000120000
0000710127
00003636
00000078
00000076
,
10000000
01000000
00100000
00010000
000012000
000001200
000000120
000000012
,
310530000
36550000
00730000
0010100000
000031124
00000800
000011473
000029118
,
310530000
710350000
00330000
006100000
00002630
00000500
0000712110
000011425

G:=sub<GL(8,GF(13))| [1,0,4,0,0,0,0,0,0,1,4,4,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,4,1,0,12],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,7,3,0,0,0,0,0,0,10,6,0,0,0,0,0,0,12,3,7,7,0,0,0,0,7,6,8,6],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[3,3,0,0,0,0,0,0,10,6,0,0,0,0,0,0,5,5,7,10,0,0,0,0,3,5,3,10,0,0,0,0,0,0,0,0,3,0,11,2,0,0,0,0,11,8,4,9,0,0,0,0,2,0,7,11,0,0,0,0,4,0,3,8],[3,7,0,0,0,0,0,0,10,10,0,0,0,0,0,0,5,3,3,6,0,0,0,0,3,5,3,10,0,0,0,0,0,0,0,0,2,0,7,11,0,0,0,0,6,5,12,4,0,0,0,0,3,0,11,2,0,0,0,0,0,0,0,5] >;

C23.5D12 in GAP, Magma, Sage, TeX

C_2^3._5D_{12}
% in TeX

G:=Group("C2^3.5D12");
// GroupNames label

G:=SmallGroup(192,301);
// by ID

G=gap.SmallGroup(192,301);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,226,570,1684,438,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^12=1,e^2=c,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a*b*c,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations

Export

Character table of C23.5D12 in TeX

׿
×
𝔽